为解决位置指纹定位算法中指纹采集工作量大、定位精度低的问题,提出一种基于稀疏指纹采集和改进加权K最近邻(weighted k-nearest neighbor,WKNN)的定位算法.稀疏选定参考点并采集来自各接入点(access point,AP)的接收信号强度(received signal strength,RSS),根据容错四分位法对采集的RSS进行异常值预处理;利用经过预处理的指纹数据训练高斯过程回归(Gaussian process regression,GPR)模型,通过共栖生物搜索算法(symbiotic or-ganisms search,SOS)求取模型最优超参数以提高模型的泛化能力,进而预测定位区域内非参考点的RSS;由有限参考点数据通过SOS-GPR模型的训练与预测生成密集位置指纹库,结合由卡方距离和AP加权改进的WKNN算法完成仿真验证.实验结果表明,在保证定位精度的前提下,稀疏指纹采集法较传统全采集法减少50%的采集工作量;与原WKNN算法和M-KWNN算法相比,提出的WKNN算法有效提高了定位精度.