基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于组合相关度的随机森林(random forest,RF)DDoS攻击检测方法.根据攻击流的非对称性和半交互性定义网络流组合相关度(combination correlation degree,CCD),该相关度以地址相关统计(address correla-tion statistics,ACS)特征以及单向流半交互度(unidirectional flow semi interaction,UFSI)二元组来描述网络流的特点.然后提出基于CCD特征序列的遗传算法对RF中决策树的最大数量和最大深度两个关键参数进行优化,对参数优化的RF模型进行训练以生成分类模型来检测攻击.实验结果表明,与同类方法相比,该方法具有较高的准确率、较低的误报率和漏报率及较好的鲁棒性,适用于大数据下检测DDoS攻击.
推荐文章
基于随机森林分类模型的DDoS攻击检测方法
随机森林
数据流信息熵
分布式拒绝服务
检测
基于全局网络PCA的DDoS攻击检测方法
分布式拒绝服务攻击
全局网络主成分分析
OD矩阵
分布式检测
基于Sibson距离的OpenFlow网络DDoS攻击检测方法研究
软件定义网络
分布式拒绝服务攻击检测
Sibson距离
控制器
基于流量和 IP熵特性的DDoS攻击检测方法
DDoS攻击
检测率
误报率
流量
IP熵
隶属函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于组合相关度的随机森林DDoS攻击检测方法
来源期刊 郑州大学学报(理学版) 学科 工学
关键词 DDoS攻击检测 网络流特征提取 遗传算法优化 随机森林
年,卷(期) 2019,(2) 所属期刊栏目 信息科学
研究方向 页码范围 23-28,39
页数 7页 分类号 TP393.08
字数 5627字 语种 中文
DOI 10.13705/j.issn.1671-6841.2018228
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (5)
参考文献  (5)
节点文献
引证文献  (3)
同被引文献  (8)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(3)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(3)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DDoS攻击检测
网络流特征提取
遗传算法优化
随机森林
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
郑州大学学报(理学版)
季刊
1671-6841
41-1338/N
大16开
郑州市高新技术开发区科学大道100号
36-191
1962
chi
出版文献量(篇)
2278
总下载数(次)
0
总被引数(次)
9540
论文1v1指导