基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对波达方向估计算法在低信噪比情况下DOA估计精度普遍不高的问题,提出了一种基于伪噪声重采样技术和求根稀疏贝叶斯学习的离格模型下DO A估计算法.利用生成的伪随机噪声对数据矩阵进行多次重采样,结合求根稀疏贝叶斯学习和局部性能测试去除DOA估计产生的异常值,对所得DOA估计结果进行筛选.仿真结果表明,该算法在低信噪比情况下具有较高的估计精度,是一种有效的DO A估计算法.
推荐文章
基于改进块稀疏贝叶斯学习算法的波达方向估计
空时联合
块稀疏
稀疏贝叶斯学习
DOA估计
基于稀疏贝叶斯学习的DOA估计
波达方向
稀疏表示
贝叶斯学习
基于变分稀疏贝叶斯学习的DOA估计
DOA估计
贝叶斯学习
变分贝叶斯学习
稀疏表示
相关向量机
MATLAB仿真
估计精度
收敛速度
基于酉变换和稀疏贝叶斯学习的离格DOA估计
到达角估计
酉变换
奇异值分解
离格模型
稀疏贝叶斯学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏贝叶斯学习的低信噪比DOA估计算法
来源期刊 桂林电子科技大学学报 学科 工学
关键词 波达方向(DOA)估计 稀疏贝叶斯学习 伪噪声重采样 低信噪比
年,卷(期) 2019,(3) 所属期刊栏目
研究方向 页码范围 218-222
页数 5页 分类号 TN911.7
字数 3745字 语种 中文
DOI 10.3969/j.issn.1673-808X.2019.03.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 车俐 桂林电子科技大学计算机与信息安全学院 48 78 5.0 6.0
2 蒋留兵 桂林电子科技大学计算机与信息安全学院 74 199 8.0 9.0
3 荣书伟 桂林电子科技大学信息与通信学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (2)
共引文献  (11)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(2)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
波达方向(DOA)估计
稀疏贝叶斯学习
伪噪声重采样
低信噪比
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
桂林电子科技大学学报
双月刊
1673-808X
45-1351/TN
大16开
广西桂林市金鸡路1号
1981
chi
出版文献量(篇)
2598
总下载数(次)
1
总被引数(次)
11679
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导