基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着我国城市化进程的加速,市民对出行的需求也日益增加,准确的交通预测模型对于更好地分析路网交通状况,规划交通网络和实现交通优化控制策略都有十分重要的作用.以城市路网短时交通流预测为研究对象,建立了基于ARMA模型和BP神经网络模型的组合预测模型,深入研究了城市路网的划分、路网构建和特征路口交通流预测等内容,形成了一个较为完整的城市路网预测体系,通过实测交通流数据,验证了所述方法的可行性和有效性,为城市路网交通流预测提供了一种解决方向.
推荐文章
BNs-OLS-SARIMA对城市短时交通流的预测
智能交通系统
短时交通流预测
贝叶斯网-最小二乘-非平稳季节模型
周期性
短时交通流量预测方法
城市交通
短时交通流量
预测
智能交通系统
基于RBF神经网络的短时交通流量预测
非线性系统
短时交通流量
RBF神经网络
面向动态导航系统的短时交通流SVR预测方法
动态导航
智能预测
支持向量回归
短时交通流
相空间重构
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于组合预测方法的城市道路短时交通流预测
来源期刊 工业工程与管理 学科 交通运输
关键词 城市路网 交通流预测 组合预测 MATLAB仿真
年,卷(期) 2019,(3) 所属期刊栏目 理论与方法
研究方向 页码范围 107-115
页数 9页 分类号 F406|U491
字数 语种 中文
DOI 10.19495/j.cnki.1007-5429.2019.03.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡浩 15 137 7.0 11.0
2 闫伟 6 61 5.0 6.0
3 李泓明 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (66)
共引文献  (192)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1776(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(1)
  • 二级参考文献(0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(6)
  • 参考文献(1)
  • 二级参考文献(5)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(9)
  • 参考文献(0)
  • 二级参考文献(9)
2004(10)
  • 参考文献(0)
  • 二级参考文献(10)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(11)
  • 参考文献(1)
  • 二级参考文献(10)
2007(4)
  • 参考文献(2)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
城市路网
交通流预测
组合预测
MATLAB仿真
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工业工程与管理
双月刊
1007-5429
31-1738/T
大16开
上海市华山路1954号上海交通大学
4-585
1996
chi
出版文献量(篇)
2959
总下载数(次)
9
总被引数(次)
54044
论文1v1指导