基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
现有的维吾尔文命名实体识别主要采用基于条件随机场的统计学习方法,但依赖于人工提取的特征工程和领域知识.针对该问题,该文提出了一种基于深度神经网络的学习方法,并引入不同的特征向量表示.首先利用大规模未标注语料训练的词向量模型获取每个单词具有语义信息的词向量;其次,利用Bi-LSTM提取单词的字符级向量;然后,利用直接串联法或注意力机制处理词向量和字符级向量,进一步获取联合向量表示;最后,用Bi-LSTM-CRF深度神经网络模型进行命名实体标注.实验结果表明,以基于注意力机制的联合向量表示作为输入的Bi-LSTM-CRF方法在维吾尔文命名实体识别上F值达到90.13%.
推荐文章
基于深度学习的医疗命名实体识别
实体识别
数据挖掘
深度学习
医疗信息
基于BiLSTM-CNN-CRF模型的维吾尔文命名实体识别
递归神经网络
卷积神经网络
条件随机场
维吾尔文
命名实体识别
基于位置敏感Embedding的中文命名实体识别
命名实体识别
表示学习
Embedding
多尺度聚类
条件随机场
基于BLSTM-CRF中文领域命名实体识别框架设计
BLSTM-CRF
CBOW
Boson
命名实体识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度神经网络的维吾尔文命名实体识别研究
来源期刊 中文信息学报 学科 工学
关键词 维吾尔文命名实体识别 长短时记忆网络 条件随机场 注意力机制
年,卷(期) 2019,(3) 所属期刊栏目 民族、跨境及周边语言信息处理
研究方向 页码范围 64-70
页数 7页 分类号 TP391
字数 5216字 语种 中文
DOI 10.3969/j.issn.1003-0077.2019.03.009
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (72)
共引文献  (53)
参考文献  (10)
节点文献
引证文献  (6)
同被引文献  (22)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(11)
  • 参考文献(1)
  • 二级参考文献(10)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(10)
  • 参考文献(1)
  • 二级参考文献(9)
2014(8)
  • 参考文献(2)
  • 二级参考文献(6)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(4)
  • 参考文献(3)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(4)
  • 引证文献(4)
  • 二级引证文献(0)
研究主题发展历程
节点文献
维吾尔文命名实体识别
长短时记忆网络
条件随机场
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中文信息学报
月刊
1003-0077
11-2325/N
16开
北京海淀区中关村南四街4号
1986
chi
出版文献量(篇)
2723
总下载数(次)
5
总被引数(次)
45413
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导