基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对目前手绘草图识别难度大,识别准确率低且主要以手工提取特征为主,提出一种新的卷积神经网络结构DCSN(Deeper-CNN-Sketch-Net)进行手绘图像识别.DCSN模型是根据手绘草图的特点进行设计,如在首层采用了更大的卷积核获取草图的结构信息和更小的步长尽可能多保留特征信息,通过增加网络层数加深网络深度等.为进一步提高识别准确率,针对手绘草图的特点提出了两种新的数据增强方法,小图形缩减策略和尾部移除策略增加数据集的多样性,并利用扩充的数据集训练DCSN网络.经实验验证,所提出的模型在目前最大的手绘图像数据集上可以取得70.5%的识别准确率,超过了目前存在的几种主流的手绘草图识别方法.
推荐文章
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于卷积神经网络的车牌识别
卷积神经网络
车牌识别
模型训练
权值共享
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的手绘草图识别
来源期刊 吉林大学学报(信息科学版) 学科 工学
关键词 手绘草图识别 卷积神经网络 网络模型 数据增强
年,卷(期) 2019,(4) 所属期刊栏目 计算机科学与技术
研究方向 页码范围 417-425
页数 9页 分类号 TP391.41
字数 7296字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 印桂生 哈尔滨工程大学计算机科学与技术学院 113 842 16.0 23.0
2 张震 哈尔滨工程大学计算机科学与技术学院 6 4 1.0 2.0
3 王宇华 哈尔滨工程大学计算机科学与技术学院 10 152 3.0 10.0
4 严雪 哈尔滨工程大学计算机科学与技术学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (22)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(8)
  • 参考文献(2)
  • 二级参考文献(6)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(5)
  • 参考文献(2)
  • 二级参考文献(3)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
手绘草图识别
卷积神经网络
网络模型
数据增强
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
吉林大学学报(信息科学版)
双月刊
1671-5896
22-1344/TN
大16开
长春市南湖大路5372号
1983
chi
出版文献量(篇)
2333
总下载数(次)
2
总被引数(次)
16807
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导