基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
自动上妆旨在通过计算机算法实现人脸妆容的编辑与合成,隶属于人脸图像分析领域.其在互动娱乐应用、图像视频编辑、辅助人脸识别等多方面起着重要作用.然而作为人脸编辑任务,其仍难以在保证图像的编辑结果自然、真实的同时又很好地满足编辑需求,并且仍有难以精确控制编辑区域、图像编辑前后一致性差、图像质量不够精细等问题.针对以上难点,创新性地提出了一种掩模控制的自动上妆生成对抗网络,该网络利用掩模方法,能够重点编辑上妆区域,约束人脸妆容编辑中无需编辑的区域不变,保持主体信息.同时其又能单独编辑人脸的眼影、嘴唇、脸颊等局部区域,实现特定区域上妆,丰富了上妆功能.此外,该网络能够进行多数据集联合训练,除妆容数据集外,还可以使用其他人脸数据集作为辅助,增强模型的泛化能力,得到更加自然的上妆结果.最后,依据多种评价标准,进行了充分的定性及定量实验,并与目前的主流算法进行了对比,综合评价了所提方法的性能.
推荐文章
基于生成对抗网络的恶意域名训练数据生成
恶意域名
DGA
生成对抗网络
检测
分类
基于生成对抗网络的遮挡表情识别
人脸表情识别
局部遮挡
人脸修复
生成对抗网络
卷积神经网络
基于条件的边界平衡生成对抗网络
生成对抗网络
条件特征
边界平衡
图像生成
基于条件生成对抗网络的漫画手绘图上色方法
漫画
手绘图
上色
深度学习
条件生成对抗网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于区域敏感生成对抗网络的自动上妆算法
来源期刊 软件学报 学科 工学
关键词 生成对抗网络 自动上妆 人脸图像编辑 深度学习
年,卷(期) 2019,(4) 所属期刊栏目 多媒体数据的知识关联与理解专题
研究方向 页码范围 896-913
页数 18页 分类号 TP391
字数 12130字 语种 中文
DOI 10.13328/j.cnki.jos.005666
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 包仁达 中国科学院信息工程研究所 1 4 1.0 1.0
2 庾涵 中国科学院信息工程研究所 1 4 1.0 1.0
3 朱德发 中国科学院信息工程研究所 1 4 1.0 1.0
4 黄少飞 中国科学院信息工程研究所 1 4 1.0 1.0
5 孙瑶 中国科学院信息工程研究所 7 34 4.0 5.0
6 刘偲 北京航空航天大学计算机学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (4)
同被引文献  (6)
二级引证文献  (0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
生成对抗网络
自动上妆
人脸图像编辑
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
总被引数(次)
226394
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导