基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对异构数据集下的不均衡分类问题,从数据集重采样、集成学习算法和构建弱分类器3个角度出发,提出一种针对异构不均衡数据集的分类方法——HVDM-Adaboost-KNN算法(heterogeneous value difference metric-Adaboost-KNN),该算法首先通过聚类算法对数据集进行均衡处理,获得多个均衡的数据子集,并构建多个子分类器,采用异构距离计算异构数据集中2个样本之间的距离,提高KNN算法的分类准性能,然后用Adaboost算法进行迭代获得最终分类器.用8组UCI数据集来评估算法在不均衡数据集下的分类性能,Adaboost实验结果表明,相比Adaboost等算法,F1值、AUC、G-mean等指标在异构不均衡数据集上的分类性能都有相应的提高.
推荐文章
融合DECORATE的异构分类器集成算法
分类器集成
异构
Stacking
DECORATE
差异性
数据流集成分类算法综述
数据流分类
集成学习
概念漂移
不平衡数据的集成分类算法综述
不平衡数据
集成学习
分类
代价敏感
数据采样
基于DS聚类的高光谱图像集成分类算法
优势集
聚类
集成
支持向量机
高光谱图像分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于异构距离的集成分类算法研究
来源期刊 智能系统学报 学科 工学
关键词 异构数据 不均衡数据 异构距离 集成学习 过取样 欠取样
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 733-742
页数 10页 分类号 TP391.4
字数 6064字 语种 中文
DOI 10.11992/tis.201807023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杜红乐 商洛学院数学与计算机应用学院 32 111 7.0 9.0
2 张燕 商洛学院数学与计算机应用学院 33 104 6.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (22)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(10)
  • 参考文献(2)
  • 二级参考文献(8)
2015(6)
  • 参考文献(3)
  • 二级参考文献(3)
2016(14)
  • 参考文献(4)
  • 二级参考文献(10)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
异构数据
不均衡数据
异构距离
集成学习
过取样
欠取样
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
总被引数(次)
12401
论文1v1指导