晋祠泉是太原市第二岩溶大泉,受太原市工农业生产大量开采岩溶水影响,该泉已于1994年4月断流.为了探索人类因素影响下的泉水水位变化趋势,采用前馈神经网络、动态递归神经网络、时延神经网络、非线性动态自回归神经网络、级联神经网络5种人工神经网络,结合14种训练算法构建晋祠泉水位预测模型,基于2013—2017年实测泉水位数据分析各种人工神经网络预测模型精度,结果表明:动态递归神经网络可用来对晋祠泉水位进行准确预测,traincgb、trainrp、traincgf、traincgp等算法效果比较理想.同时应用LSTM深度学习模型预报未来10 a的降水量,进而计算出降水入渗补给量等,并结合动态递归神经网络预测晋祠泉域未来水位变化,结果测定2019年晋祠泉水位可以超过复流最低水位802.59 m.