基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
深度学习中用于训练的高光谱图像(HSI)数据十分有限,因此较深的网络不利于空谱特征的提取.为了缓解该问题,文中提出3D多尺度特征融合残差网络,利用深度学习和多尺度特征融合的方式对光谱-空间特征进行有序的学习.首先对3D-HSI数据进行自适应降维,将降维后的图像作为网络输入.然后,通过多尺度特征融合残差块依次提取光谱-空间特征,融合不同尺度的特征,通过特征共享增强信息流,获得更丰富的特征.最后以端到端的方式训练网络.在相关数据集上的测试表明,文中网络具有良好的分类性能.
推荐文章
基于三维残差网络和虚拟样本的高光谱图像分类方法研究
高光谱图像
图像分类
深度学习
参数优化
三维残差网络
实验验证
采用ACGAN及多特征融合的 高光谱遥感图像分类
高光谱图像分类
生成对抗网络
局部二值模式
卷积神经网络
基于降维Gabor特征和决策融合的高光谱图像分类
高光谱图像
分类
Gabor特征
高斯混合模型
决策融合
PCA投影
利用特征子空间评价与多分类器融合的高光谱图像分类
高光谱图像
多分类器融合
自适应子空间分解
加权表决
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于3D多尺度特征融合残差网络的高光谱图像分类
来源期刊 模式识别与人工智能 学科 工学
关键词 深度学习 多尺度特征融合 特征提取 高光谱图像分类
年,卷(期) 2019,(10) 所属期刊栏目 论文与报告
研究方向 页码范围 882-891
页数 10页 分类号 TN911.71|TP183
字数 5112字 语种 中文
DOI 10.16451/j.cnki.issn1003-6059.201910002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曹飞龙 中国计量大学理学院应用数学系 62 241 8.0 12.0
2 郭文慧 中国计量大学理学院应用数学系 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (12)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
多尺度特征融合
特征提取
高光谱图像分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
模式识别与人工智能
月刊
1003-6059
34-1089/TP
16开
中国科学院合肥智能机械研究所安徽合肥董铺岛合肥1130信箱
26-69
1989
chi
出版文献量(篇)
2928
总下载数(次)
8
总被引数(次)
30919
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导