受视距远、视差小、目标特征单一和背景复杂等因素的影响,空基无人平台对地目标检测作为智能无人平台领域研究的难点问题,得到了越来越多的关注.利用传统的基于深度学习的目标检测算法容易出现错检和漏检,对此,利用单一观测视角下的同类目标成像一致性,定义了空对地区域重叠度(insection of unit,IOU)损失函数,实现了序贯图像同类目标之间的相关性表示;此外,利用空对地场景下目标之间的相关性,建立了基于朴素贝叶斯判据的目标尺度约束辅助检测模型,以提高目标检测的鲁棒性.最后基于公共数据集和自有无人机平台飞行数据,进行了空对地典型目标的检测实验,检测结果证明了上述方法的有效性.