针对基于在线牛顿步(Online Newton Step,ONS)算法的投资组合选择策略没有考虑交易成本的问题,而交易成本是真实市场中不可或缺的部分,提出了一种新的带交易成本的在线投资组合选择策略,简称在线牛顿步交易成本策略(Online Newton Step Transaction Cost,ONSC):首先,结合投资组合向量的二阶信息和交易成本惩罚项构造优化函数,并推导得出投资组合的更新公式;然后,通过理论分析得到ONSC算法的次线性后悔边界O(log(T)).实证研究表明,与半常数再调整投资组合策略(Semiconstant Rebalanced Portfolios,SCRP)以及其他考虑交易成本的策略相比,在SP500、NYSE(O)、NYSE(N)和TSE这4个真实市场的数据集上,ONSC获得了最高的累计净收益和最小的周转率,表明了所提算法的有效性.