基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
现有低分辨雷达目标识别通常采用先特征提取 、再进行目标分类的两步识别算法,存在识别率难以提高和方法泛化性不足的问题,因此提出了一种基于卷积神经网络(CNN)的低分辨雷达目标一步识别算法.该算法直接将采样数据作为输入,利用设计的一维CNN,通过卷积池化等操作自动获取数据深层本质特征,无需特征提取,实现对目标的一步识别.仿真实验结果表明:基于CNN的低分辨雷达目标一步识别方法的识别率较传统基于提取特征的两步识别方法提高了10.31%,识别时间较传统两步识别方法减少了0.142 s,充分证明了一步识别方法的有效性,为低分辨雷达目标识别问题提供了新的解决途径.
推荐文章
基于卷积神经网络的高分辨率雷达目标识别
高分辨距离像
雷达目标识别
卷积神经网络
批归一化
支持向量机
低分辨雷达目标识别方法研究
特征提取
目标识别
神经网络
基于GA N的半监督低分辨雷达目标识别算法
低分辨雷达目标识别
深度学习
生成对抗网络
卷积神经网络
基于深度复合卷积神经网络的低分辨率单影像复原
超低分辨率图像
卷积神经网络
单影像复原
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的低分辨雷达目标一步识别技术
来源期刊 空军工程大学学报(自然科学版) 学科 工学
关键词 低分辨雷达目标识别 一步识别算法 卷积神经网络
年,卷(期) 2019,(5) 所属期刊栏目 空天防御
研究方向 页码范围 83-89
页数 7页 分类号 TN957.52
字数 6582字 语种 中文
DOI 10.3969/j.issn.1009-3516.2019.05.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王杰贵 国防科技大学电子对抗学院 10 3 1.0 1.0
2 朱克凡 国防科技大学电子对抗学院 7 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (109)
共引文献  (103)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(7)
  • 参考文献(0)
  • 二级参考文献(7)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(8)
  • 参考文献(1)
  • 二级参考文献(7)
2006(8)
  • 参考文献(1)
  • 二级参考文献(7)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(9)
  • 参考文献(2)
  • 二级参考文献(7)
2011(4)
  • 参考文献(2)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(11)
  • 参考文献(1)
  • 二级参考文献(10)
2014(6)
  • 参考文献(1)
  • 二级参考文献(5)
2015(11)
  • 参考文献(0)
  • 二级参考文献(11)
2016(11)
  • 参考文献(0)
  • 二级参考文献(11)
2017(6)
  • 参考文献(3)
  • 二级参考文献(3)
2018(6)
  • 参考文献(5)
  • 二级参考文献(1)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
低分辨雷达目标识别
一步识别算法
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
空军工程大学学报(自然科学版)
双月刊
1009-3516
61-1338/N
大16开
西安市空军工程大学
52-247
2000
chi
出版文献量(篇)
2810
总下载数(次)
5
总被引数(次)
15414
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导