基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对基于深度学习的分类器面对对抗样本时缺乏稳定性的问题,基于生成对抗网络(GAN)提出了一种新的模型,用于生成对抗样本.该模型首次实现了直接以恶意网络流为原始样本的对抗样本生成,并首次提出了弱相关位的概念,用于保证恶意网络流对抗样本的可执行性和攻击性.利用该模型生成的对抗样本能够有效地欺骗基于深度学习的网络安全检测器,且通过实验验证了该对抗样本具有实际攻击效果.
推荐文章
基于生成对抗网络的恶意域名训练数据生成
恶意域名
DGA
生成对抗网络
检测
分类
基于条件的边界平衡生成对抗网络
生成对抗网络
条件特征
边界平衡
图像生成
生成对抗网络研究综述
GAN
神经对抗网络
二人博弈
人工智能
深度学习
生成式模型
基于生成对抗网络的航班起飞风险预测
航班起飞风险预测
数据增强
生成对抗网络
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于生成对抗网络的恶意网络流生成及验证
来源期刊 华东理工大学学报(自然科学版) 学科 工学
关键词 生成对抗网络 网络攻击 对抗样本
年,卷(期) 2019,(2) 所属期刊栏目 信息科学与工程
研究方向 页码范围 344-350
页数 7页 分类号 TP391
字数 7535字 语种 中文
DOI 10.14135/j.cnki.1006-3080.20180313003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 林家骏 华东理工大学信息科学与工程学院 171 1083 15.0 26.0
2 潘一鸣 华东理工大学信息科学与工程学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (3)
同被引文献  (18)
二级引证文献  (0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
生成对抗网络
网络攻击
对抗样本
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华东理工大学学报(自然科学版)
双月刊
1006-3080
31-1691/TQ
16开
上海市梅陇路130号
4-382
1957
chi
出版文献量(篇)
3399
总下载数(次)
2
总被引数(次)
27146
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导