基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于激发、接收及工区现场等导致野外采集的地震数据出现异常道,这时需要对地震记录道编辑处理.当数据量比较大时,人工进行道编辑工作量庞大.非人工做法主要是利用计算机将异常道剔除,没有对异常道细致分类,由此造成了大量的原始数据损失,异常道的产生原因也无从得知.随着计算机性能的提高,深度学习发展迅猛,卷积神经网络(CNN)在深度学习领域起着至关重要的作用.CNN避免了前期很多工作,可以直接输入数据训练模型,将模型用于分类预测,作为一种快速高效的识别算法,可以广泛应用到各个研究领域,本文对极性反转、单频信号、强振幅噪声、空道四种常见的异常道和正常道进行细致分类编号,利用优化的深度卷积神经网络算法识别坏道并进行有效分类,不仅有利于后续对相应道的特殊处理,而且有利于推断产生异常道的原因,在以后的工作中针对产生原因做相应的工作调整.
推荐文章
卷积神经网络在岩性识别中的应用
测井解释
深度学习
卷积神经网络
岩性识别
基于优化的卷积神经网络在交通标志识别中的应用
卷积神经网络
非对称卷积
批量归一化
交通标志
梯度传输
分类精度
改进卷积神经网络在分类与推荐中的实例应用
服装分类与推荐
卷积神经网络
图片增广
感知哈希算法
卷积神经网络在乐器板材优劣识别中的应用研究
卷积神经网络
网格搜索
语谱图
木材振动信号
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 优化卷积神经网络在道编辑中的应用
来源期刊 地球物理学进展 学科 地球科学
关键词 深度学习 反向传播 卷积神经网络 随机梯度下降 道编辑 正常道 异常道
年,卷(期) 2019,(1) 所属期刊栏目 应用地球物理学Ⅰ(油气及金属矿产地球物理勘探)
研究方向 页码范围 214-220
页数 7页 分类号 P631
字数 语种 中文
DOI 10.6038/pg2019BB0387
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孟凡顺 41 237 10.0 14.0
2 王文强 1 0 0.0 0.0
3 孙文亮 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (91)
共引文献  (153)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1957(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(2)
  • 参考文献(0)
  • 二级参考文献(2)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(3)
  • 参考文献(1)
  • 二级参考文献(2)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(3)
  • 参考文献(1)
  • 二级参考文献(2)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(4)
  • 参考文献(1)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(9)
  • 参考文献(0)
  • 二级参考文献(9)
2003(10)
  • 参考文献(0)
  • 二级参考文献(10)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(7)
  • 参考文献(2)
  • 二级参考文献(5)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
反向传播
卷积神经网络
随机梯度下降
道编辑
正常道
异常道
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地球物理学进展
双月刊
1004-2903
11-2982/P
大16开
北京市9825信箱(朝阳区北土城西路19号中科院地质与地球物理研究所) 质与地球物理研究所办公楼113号)
1986
chi
出版文献量(篇)
5468
总下载数(次)
11
总被引数(次)
68508
论文1v1指导