原文服务方: 广东通信技术       
摘要:
针对手机液晶面板生产工业中缺陷检测面临的精度低的问题,提出了一种基于深度学习的液晶面板缺陷检测算法,该算法在传统单向特征融合的基础上提出了双向特征融合的网络结构,并提出一种新型的特征融合方法.结合多源域缺陷数据的迁移学习的方法进行了训练,实现了手机液晶面板缺陷数据集上对缺陷目标的检测.实验结果表明,针对多种不同类型的手机液晶面板缺陷,该方法达到了75.4%的mAP,相较于YOLO算法提升了13.9%,提升了液晶面板缺陷检测的检测精度.
推荐文章
基于多源域深度迁移学习的液晶面板缺陷检测算法
缺陷检测
多源域深度迁移学习
液晶面板
深度学习
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
尺度无关的级联卷积神经网络人脸检测算法
级联卷积神经网络
空间金字塔池化
人脸检测
基于卷积神经网络的图像检测识别算法综述
卷积神经网络
图像检测
图像识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于双向特征融合卷积神经网络的液晶面板缺陷检测算法
来源期刊 广东通信技术 学科
关键词 深度卷积神经网络 双向特征融合 缺陷检测 液晶面板 深度学习 迁移学习
年,卷(期) 2019,(4) 所属期刊栏目 技术交流
研究方向 页码范围 66-73
页数 8页 分类号
字数 语种 中文
DOI 10.3969/j.issn.1006-6403.2019.04.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭大芹 重庆邮电大学通信与信息工程学院 47 147 8.0 10.0
5 刘恒 重庆邮电大学通信与信息工程学院 11 60 4.0 7.0
9 许国良 重庆邮电大学通信与信息工程学院 10 2 1.0 1.0
13 邓柯 重庆邮电大学通信与信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (135)
共引文献  (72)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(11)
  • 参考文献(0)
  • 二级参考文献(11)
2010(13)
  • 参考文献(0)
  • 二级参考文献(13)
2011(12)
  • 参考文献(0)
  • 二级参考文献(12)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(9)
  • 参考文献(3)
  • 二级参考文献(6)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度卷积神经网络
双向特征融合
缺陷检测
液晶面板
深度学习
迁移学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
广东通信技术
月刊
1006-6403
44-1221/TN
大16开
1981-01-01
chi
出版文献量(篇)
4289
总下载数(次)
0
论文1v1指导