基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Based on the data of daily precipitation in Lianyungang area from 1951 to 2012 and various climate signal data from the National Climate Center website and the NOAA website,a model for predicting whether the number of rainstorm days in summer in Lianyungang area is large was established by the classical C5. 0 decision tree algorithm. The data samples in 48 years( accounting for about 80% of total number of samples)was as the training set of a model,and the training accuracy rate of the model was 95. 83%. The data samples in the remaining 14 years( accounting for about 20% of total number of samples) were used as the test set of the model to test the model,and the test accuracy of the model was 85. 71%. The results showed that the prediction model of number of rainstorm days in summer constructed by C5. 0 algorithm had high accuracy and was easy to explain. Moreover,it is convenient for meteorological staff to use directly. At the same time,this study provides a new idea for short-term climate prediction of number of rainstorm days in summer.
推荐文章
C5.0决策树Hyperion影像森林类型精细分类方法
森林经理学
Hyperion
C5.0决策树
分层分类
森林类型分类
高光谱
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
利用C5.0决策树算法解释碳酸盐岩储层渗透率
测井解释
C5.0决策树算法
机器学习
储层分类
碳酸盐岩
渗透率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Study on Prediction Model of Number of Rainstorm Days in Summer Based on C5.0 Decision Tree Algorithm
来源期刊 气象与环境研究:英文版 学科 地球科学
关键词 C5. 0 algorithm NUMBER of RAINSTORM DAYS PREDICTION model
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 56-60
页数 5页 分类号 P457.6
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
C5.
0
algorithm
NUMBER
of
RAINSTORM
DAYS
PREDICTION
model
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
气象与环境研究:英文版
双月刊
2152-3940
出版文献量(篇)
1887
总下载数(次)
1
总被引数(次)
0
论文1v1指导