基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
人体动作识别是以人为中心的物联网的核心技术之一.为了实现无需穿戴设备、低成本的动作识别系统,提出了一种基于WiFi信道状态信息(Channel State Information,CSI)的人体动作识别方法.该方法采用Hampel滤波结合离散小波去噪对CSI信息进行处理后,利用CSI幅度方差确定动作起止区间,从中提取CSI的特征向量,并用线性判别式分析算法(Linear Discriminant Analysis,LDA)分类器实现人体日常生活中"蹲下"、"站起"、"坐下"、"捡起"和"走"5种动作的识别,实验结果表明平均识别率可达到96%.
推荐文章
基于深度学习的人体动作识别方法
深度信息
人体动作识别
深度学习
空间结构动态深度图
深度卷积神经网络
基于角度序列特征的人体动作识别方法
动作识别
Kinect传感器
动态时间规整
DTW
角度序列
关节点时空信息融合降维的人体动作识别方法
卷积神经网络
高分辨率网络
人体动作识别
KTH数据集
基于时空图像分割和交互区域检测的人体动作识别方法
人体动作识别
时空图像分割
交互区域
局部约束线性编码
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于WiFi信道状态信息的人体动作识别方法
来源期刊 传感技术学报 学科 工学
关键词 无线感知 动作识别 WiFi信道状态信息 线性判别分析
年,卷(期) 2019,(11) 所属期刊栏目 传感器信号处理
研究方向 页码范围 1688-1693
页数 6页 分类号 TN391
字数 3342字 语种 中文
DOI 10.3969/j.issn.1004-1699.2019.11.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 许志猛 福州大学物理与信息工程学院 25 26 3.0 4.0
2 陈良琴 福州大学物理与信息工程学院 16 99 6.0 9.0
3 郭阿英 福州大学物理与信息工程学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (70)
共引文献  (23)
参考文献  (12)
节点文献
引证文献  (1)
同被引文献  (3)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(10)
  • 参考文献(1)
  • 二级参考文献(9)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(13)
  • 参考文献(3)
  • 二级参考文献(10)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
无线感知
动作识别
WiFi信道状态信息
线性判别分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
传感技术学报
月刊
1004-1699
32-1322/TN
大16开
南京市四牌楼2号东南大学
1988
chi
出版文献量(篇)
6772
总下载数(次)
23
总被引数(次)
65542
论文1v1指导