摘要:
及时获取农田作物根域土壤墒情是实现精准灌溉的基础和关键.以内蒙古自治区达拉特旗昭君镇试验站大田玉米为研究对象,利用无人机遥感系统,分别在玉米营养生长期(Vegetative stage,V期)、生殖期(Reproductive stage,R期)和成熟期(Maturation stage,M期)获得7次玉米冠层多光谱正射影像,并同步采集玉米根域不同深度土壤含水率(Soil moisture content,SMC);然后,采用灰色关联法对提取的多种植被指数(Vegetation index,VI)进行筛选,选取与土壤含水率敏感的植被指数;最后,分别采用多元混合线性回归(Cubist)、反向传播神经网络(Back propagation neural network,BPNN)和支持向量机回归(Support vector machine regression,SVR)等机器学习方法,构建不同生育期的敏感植被指数与土壤含水率的关系模型.结果 表明,3种机器学习方法中SVR模型在各生育期的建模与预测精度均最优,BPNN模型次之,Cubist模型最差;其中SVR模型在M期效果最优,其建模集和验证集R2分别为0.851和0.875,均方根误差(Root mean square error,RMSE)均为0.7%,标准均方根误差(Normalized root mean square error,nRMSE)分别为8.17%和8.32%,R期效果最差,其建模集和验证集R2分别为0.619和0.517.