基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在面对具有随机性、突变性的复杂时间序列数据(如流量等水文时间序列数据)时,传统单一的模型的预测精度不尽人意,对单一模型的优化不能完全克服其局限性.因此,文中提出一种基于WNN-SVM组合的水文时间序列预测模型.首先对水文时间序列数据作均值归一化处理,然后对预处理后的水文时间序列进行小波分解,将分解后的子序列通过相空间重构的方法使其从低维时间序列向高维转换;根据其分解后的特点,对尺度变换序列采用支持向量机(SVM)进行建模预测,小波变换序列采用小波神经网络(WNN)进行建模预测,再将两者的预测结果进行小波重构,得到原始序列预测值.随后采用屯溪流域1980年至2007年43996个小时流量数据进行实验验证,结果表明该模型的预测精度高于单一模型,证明了该模型的有效性.
推荐文章
基于LS-SVM的装备需求时间序列预测
支持向量机
时间序列
混沌
相空间
嵌入维数
基于微粒群算法的LS-SVM时间序列预测
支持向量机
微粒群算法
时间序列预测
超平面空间
基于在线LS-SVM算法的变参数混沌时间序列预测
混沌
时间序列
预测
最小二乘支持向量机
变参数系统
基于SVM的地震序列类型早期预测研究
地震序列
SVM
统计模式识别
序列类型
早期预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于WNN-SVM的水文时间序列预测方法研究
来源期刊 计算机技术与发展 学科 工学
关键词 均值归一化 组合模型 时间序列预测 小波神经网络 支持向量机
年,卷(期) 2019,(9) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 13-17,70
页数 6页 分类号 TP39
字数 4378字 语种 中文
DOI 10.3969/j.issn.1673-629X.2019.09.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 万定生 河海大学计算机与信息学院 87 634 15.0 20.0
2 余洋 河海大学计算机与信息学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (79)
共引文献  (34)
参考文献  (12)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(6)
  • 参考文献(1)
  • 二级参考文献(5)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(8)
  • 参考文献(2)
  • 二级参考文献(6)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
均值归一化
组合模型
时间序列预测
小波神经网络
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导