为了实现监控场景下的人脸识别,采集了监控视频中500个人每人2张人脸图像构成SVF(Surveillance Video Faces)测试集,包括500个正样本对,499000个负样本对.提出一种改进型加性余弦间隔损失函数,对加性余弦间隔损失函数进行改进,通过在特征与目标权重夹角的余弦值减去一个值,在特征与非目标权重夹角的余弦值加一个值,该值为0~1之间的数,通过实验选取最佳值,达到减小类内距离,拉大类间距离的目的.实验结果表明,与Softmax损失函数、乘性角度间隔损失函数及加性余弦间隔损失函数训练的人脸识别模型相比,该方法在监控场景测试集人脸识别准确率最高,为99.1%.