基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高光照变化下目标跟踪算法的精度和鲁棒性,基于稀疏表示理论,提出一种光照补偿和多任务稀疏表示联合优化算法.该算法首先根据目标模板与候选目标的平均亮度差异对目标模板光照补偿,而后利用候选目标构建过完备字典以稀疏表示光照补偿后的目标模板,并将所得问题转化为一个多任务优化问题,然后利用所得稀疏编码矩阵快速剔除无关候选目标,最后基于重构误差对剩余候选目标进行局部结构化评估,进而实现目标的精确跟踪.实验结果表明,与现有主流算法相比,剧烈光照变化情况下,所提方法可显著改善目标跟踪精度及鲁棒性.
推荐文章
基于深度特征的稀疏表示目标跟踪算法
目标跟踪
稀疏表示
卷积神经网络
生成模型
深度学习
基于稀疏表示和特征选择的LK目标跟踪
视觉跟踪
稀疏表示
LK图像配准算法
特征选择
基于加权分块稀疏表示的光照鲁棒性人脸识别
人脸识别
光照归一化
稀疏表示
加权分块
基于SIFT稀疏表示的人脸识别算法
人脸识别
尺度不变特征变换
FisherVector
主成分分析
稀疏表示
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 光照变化下基于稀疏表示的视觉跟踪算法研究
来源期刊 电光与控制 学科 工学
关键词 视觉跟踪 光照补偿 稀疏表示 外观模型
年,卷(期) 2019,(4) 所属期刊栏目 学术研究
研究方向 页码范围 11-16,38
页数 7页 分类号 TP391
字数 6546字 语种 中文
DOI 10.3969/j.issn.1671-637X.2019.04.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 裴炳南 大连大学辽宁省北斗高精度位置服务技术工程实验室 55 196 8.0 11.0
5 王洪雁 大连大学辽宁省北斗高精度位置服务技术工程实验室 30 40 3.0 5.0
9 邱贺磊 大连大学辽宁省北斗高精度位置服务技术工程实验室 4 5 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(5)
  • 参考文献(5)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
视觉跟踪
光照补偿
稀疏表示
外观模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电光与控制
月刊
1671-637X
41-1227/TN
大16开
河南省洛阳市017信箱16分箱
1970
chi
出版文献量(篇)
4517
总下载数(次)
11
相关基金
中国博士后科学基金
英文译名:China Postdoctoral Science Foundation
官方网址:http://www.chinapostdoctor.org.cn/index.asp
项目类型:
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导