基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有目标检测方法仅适用于大尺寸、少量特定种类交通标志的检测,且对复杂交通场景图像检测效果不佳的问题,以抗退化性能较强的ResNet101为基础网络,增加若干卷积层构建残差单发多框检测器(SSD)模型,对高分辨率的交通图像进行多尺度分块检测。为了加快检测速度,采取由粗到精的策略,省略对纯背景图像块的预测. 利用中等尺度图像块的初检结果缩小目标范围;对目标范围内的其他图像块进行检测;将所有图像块结果映射回原图像,并结合非极大值抑制实现精准识别。实验结果表明,该模型在公开的交通标志数据集Tsinghua-Tencent 100K上取得了94%的总体准确率和95%的总体召回率,对多分辨率图像中不同大小和形态的交通标志都具有良好的检测能力,鲁棒性较强。
推荐文章
用于交通标志检测的窗口大小聚类残差SSD模型
交通标志检测
深度学习
单拍多盒探测器(SSD)
K-均值
聚类
基于聚类与链码技术的交通标志检测
交通标志检测
聚类
分类器
链码
基于颜色和形状的交通标志检测与分类
交通标志检测与分类
颜色分割
拐角提取
神经网络
基于多尺度卷积神经网络的交通标志识别
模式识别系统
交通标志识别
多尺度卷积神经网络
SoftMax分类器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于残差单发多框检测器模型的交通标志检测与识别
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 交通标志 残差单发多框检测器(SSD)模型 多尺度分块 检测 由粗到精
年,卷(期) 2019,(5) 所属期刊栏目 交通工程
研究方向 页码范围 940-949
页数 10页 分类号 TP 391
字数 6572字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张淑芳 天津大学电气自动化与信息工程学院 25 183 9.0 12.0
2 朱彤 天津大学电气自动化与信息工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (4)
参考文献  (5)
节点文献
引证文献  (2)
同被引文献  (13)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通标志
残差单发多框检测器(SSD)模型
多尺度分块
检测
由粗到精
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导