基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有的基于车牌字符分割的车牌识别方法,在光照,阴暗等特定自然场景下存在无法定位且车牌字符无法正确分割,直接影响车牌字符识别效果的问题,提出一种基于深度学习的车牌定位和识别方法.首先采用深度学习Faster R-CNN算法进行车牌定位,利用k-means++算法来选择最佳车牌区域尺寸,解决现有车牌定位方法在某些自然场景下无法正确定位车牌的问题;然后在AlexNet网络模型的基础上进行改进和重新构建,提出一种增强的卷积神经网络模型AlexNet-L,该模型是一种针对车牌字符识别的端对端网络模型,可提高车牌识别准确率,避免现有的基于车牌字符分割的车牌识别方法中因无法正确分割车牌字符对车牌字符识别的影响.实验结果表明,该方法可以更有效地提高车牌定位和车牌字符识别的准确度和效率.
推荐文章
车牌自动定位与识别方法研究
智能交通系统
车牌定位
字符分割
文字识别
基于图像处理技术的车牌识别方法研究
图像处理技术
车牌识别系统
数字形态学
直接分割法
深度学习在车牌定位中的研究
车牌定位
深度学习
复杂背景
不平衡数据
困难样本挖掘
基于深度学习的人体动作识别方法
深度信息
人体动作识别
深度学习
空间结构动态深度图
深度卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的车牌定位和识别方法
来源期刊 计算机辅助设计与图形学学报 学科 工学
关键词 深度学习 车牌定位 字符识别 k-means++ AlexNet-L
年,卷(期) 2019,(6) 所属期刊栏目 图像与视觉
研究方向 页码范围 979-987
页数 9页 分类号 TP391.41
字数 7282字 语种 中文
DOI 10.3724/SP.J.1089.2019.17408
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 闵卫东 南昌大学软件学院 13 69 4.0 8.0
2 韩清 南昌大学信息工程学院 6 57 4.0 6.0
3 李祥鹏 南昌大学信息工程学院 1 7 1.0 1.0
4 刘瑞康 南昌大学信息工程学院 1 7 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (17)
参考文献  (17)
节点文献
引证文献  (7)
同被引文献  (20)
二级引证文献  (1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(5)
  • 参考文献(5)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(6)
  • 引证文献(5)
  • 二级引证文献(1)
研究主题发展历程
节点文献
深度学习
车牌定位
字符识别
k-means++
AlexNet-L
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机辅助设计与图形学学报
月刊
1003-9775
11-2925/TP
大16开
北京2704信箱
82-456
1989
chi
出版文献量(篇)
6095
总下载数(次)
15
总被引数(次)
94943
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
江西省自然科学基金
英文译名:Natural Science Foundation of Jiangxi Province
官方网址:http://www.jxstc.gov.cn/ReadNews.asp?NewsID=861
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导