原文服务方: 化工学报       
摘要:
针对污水处理过程出水生化需氧量(biochemical oxygen demand,BOD)难以实时准确测量的问题,提出了一种基于互信息和自组织RBF神经网络的软测量方法对出水BOD进行预测.首先,使用基于互信息的方法提取相关特征参量作为软测量模型的输入变量;其次,设计一种基于误差校正-敏感度分析的自组织RBF神经网络,使用改进的Levenberg-Marquardt (LM)算法对网络进行训练以提高训练速度;最后将软测量模型应用于UCI公开数据集及实际的污水处理过程,实验结果表明该软测量模型结构紧凑,训练时间相对较短,预测精度有所提高,能够对出水BOD实现快速准确预测.
推荐文章
基于SOM-RBF神经网络的COD软测量方法
化学需氧量
软测量
自组织特征映射
径向基函数网络
神经网络
模型
预测
基于联合互信息的动态软测量方法
软测量
互信息
时延估计
动态建模
基于SOM和RBF网络的软测量方法研究
自组织特征映射
径向基函数
软测量
氢粉碎
基于粗糙集和自组织神经网络的聚类方法
自组织神经网络
粗糙集
聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于互信息和自组织RBF神经网络的出水BOD软测量方法
来源期刊 化工学报 学科
关键词 神经网络 动态建模 互信息 RBF 自组织 出水BOD 预测
年,卷(期) 2019,(2) 所属期刊栏目 过程系统工程
研究方向 页码范围 687-695
页数 9页 分类号 TP183
字数 语种 中文
DOI 10.11949/j.issn.0438?1157.20181362
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 乔俊飞 北京工业大学信息学部 181 1883 22.0 31.0
3 李萌 北京工业大学信息学部 22 95 6.0 9.0
5 李文静 北京工业大学信息学部 26 118 6.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (104)
共引文献  (25)
参考文献  (24)
节点文献
引证文献  (4)
同被引文献  (19)
二级引证文献  (2)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(4)
  • 参考文献(1)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(5)
  • 参考文献(2)
  • 二级参考文献(3)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(10)
  • 参考文献(1)
  • 二级参考文献(9)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(15)
  • 参考文献(1)
  • 二级参考文献(14)
2012(13)
  • 参考文献(2)
  • 二级参考文献(11)
2013(13)
  • 参考文献(2)
  • 二级参考文献(11)
2014(10)
  • 参考文献(4)
  • 二级参考文献(6)
2015(5)
  • 参考文献(3)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(4)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(4)
  • 二级引证文献(0)
2019(4)
  • 引证文献(4)
  • 二级引证文献(0)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
神经网络
动态建模
互信息
RBF
自组织
出水BOD
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
化工学报
月刊
0438-1157
11-1946/TQ
大16开
1923-01-01
chi
出版文献量(篇)
11879
总下载数(次)
0
总被引数(次)
117834
论文1v1指导