基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了充分利用RGB-D图像的深度图像信息,提出了基于张量分解的物体识别方法.首先将RGB-D图像构造成一个四阶张量,然后将该四阶张量分解为一个核心张量和四个因子矩阵,再利用相应的因子矩阵将原张量进行投影,获得融合后的RGB-D数据,最后输入到卷积神经网络中进行识别.RGB-D数据集中三组相似物体的识别结果表明,利用张量分解融合RGB-D图像的物体识别准确率高于未采用张量分解的物体识别准确率,并且单一错分实例的准确率最高可提升99%.
推荐文章
融合RGB-D信息的三维物体识别算法
物体识别
深度学习模型
网络训练
特征提取
特征融合
准确率提升
多尺度卷积递归神经网络的RGB-D物体识别
多尺度
3D曲面法线
递归神经网络
RGB-D物体识别
基于结构森林的RGB-D图像轮廓提取
轮廓提取
深度信息
结构森林
RGB-D图像
基于RGB-D信息的动态手势识别方法
动态手势识别
彩色—深度图像
K-均值聚类算法
动态时间规整
快速动态时间规整
卡尔曼滤波
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于张量分解融合RGB-D图像的物体识别
来源期刊 计算机工程与应用 学科 工学
关键词 RGB-D图像融合 卷积神经网络 张量分解 Tucker分解 物体识别
年,卷(期) 2019,(2) 所属期刊栏目 图形图像处理
研究方向 页码范围 174-178
页数 5页 分类号 TP391.4
字数 4650字 语种 中文
DOI 10.3778/j.issn.1002-8331.1710-0107
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 文元美 广东工业大学信息工程学院 51 174 6.0 10.0
2 凌永权 广东工业大学信息工程学院 12 49 3.0 6.0
3 余霆嵩 广东工业大学信息工程学院 2 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (7)
参考文献  (3)
节点文献
引证文献  (3)
同被引文献  (3)
二级引证文献  (1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(3)
  • 引证文献(2)
  • 二级引证文献(1)
研究主题发展历程
节点文献
RGB-D图像融合
卷积神经网络
张量分解
Tucker分解
物体识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
广东省自然科学基金
英文译名:Guangdong Natural Science Foundation
官方网址:http://gdsf.gdstc.gov.cn/
项目类型:研究团队
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导