基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
短期负荷受社会因素和自然因素的影响,使得精准负荷预测困难重重.为了提高短期电力负荷预测精度,提出一种基于改进一般随机神经网络的负荷预测模型.随机神经网络与传统的BP神经网络相比的优势在于随机神经网络在参数优化过程中不会陷入局部最优,但是随机神经也存在自身的不足.针对一般随机神经网络优化过慢;参数优化朝着局部数据而不是整体训练数据,导致最后保存模型不是对整个训练集整体的最优模型.提出在随机神经网络预测模型中用Adam算法替代传统的梯度下降优化算法加快优化,并在随机神经网络模型每次更新后计算整体数据的损失函数,保存损失函数最小时的模型.通过实验分析,验证改进的随机神经网络模型更加有效.
推荐文章
基于PSO?BP神经网络的短期负荷预测算法
短期负荷预测
BP神经网络
粒子群算法
零相滤波器
基于LSTM时间递归神经网络的短期电力负荷预测
短期电力负荷预测
LSTM
时间递归
神经网络
基于神经网络自适应集成的短期负荷预测
短期负荷预测
神经网络集成
径向基神经网络
自适应集成
基于混沌模糊神经网络方法的短期负荷预测
短期负荷
混沌算法
模糊神经网络
预测模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于随机神经网络的短期负荷预测
来源期刊 制造业自动化 学科 工学
关键词 负荷预测 神经网络 梯度下降 ADAM算法 随机神经网络
年,卷(期) 2019,(7) 所属期刊栏目 控制技术
研究方向 页码范围 44-48
页数 5页 分类号 TP18
字数 4156字 语种 中文
DOI 10.3969/j.issn.1009-0134.2019.07.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 逯静 河南理工大学计算机科学与技术学院 8 14 2.0 3.0
2 王瑞 河南理工大学计算机科学与技术学院 11 39 4.0 6.0
3 王强强 河南理工大学计算机科学与技术学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (44)
共引文献  (501)
参考文献  (9)
节点文献
引证文献  (1)
同被引文献  (12)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(5)
  • 参考文献(2)
  • 二级参考文献(3)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(6)
  • 参考文献(2)
  • 二级参考文献(4)
2016(7)
  • 参考文献(0)
  • 二级参考文献(7)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
负荷预测
神经网络
梯度下降
ADAM算法
随机神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
制造业自动化
月刊
1009-0134
11-4389/TP
大16开
北京德胜门外教场口1号
2-324
1979
chi
出版文献量(篇)
12053
总下载数(次)
12
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导