作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
我国茶叶种植面积和产量均为世界第一,是特色农业的重要组成部分;但我国茶叶品质检测体系不完善,分级技术水平不高,影响了产品在国际市场上的竞争力.传统的茶叶分级是由人工分析判断,具有较大的局限性.计算机视觉是一种新型的图像处理技术,已经应用于茶叶品质分析.为此,将拍摄的茶叶和茶水图像进行预处理、灰度化和阈值分割,获得目标轮廓并分析颜色特征,并通过建模集样本确定用于色泽检测的特征量,然后对检验集样本进行色泽检测.结果表明:检验集中被错误识别的茶叶种类极少,总体的识别准确率达到90%,为准确评价茶叶的色泽品质提供了技术支持.
推荐文章
利用计算机视觉研究白茶加工中色泽的变化
计算机视觉
白茶
加工
色泽变化
基于计算机视觉的铆钉缺陷检测
计算机视觉
图像处理
差影法
铆钉缺陷
基于计算机视觉的人脸检测
人脸检测
肤色分割
计算机视觉
计算机视觉技术在茶叶领域中的应用现状及展望
茶叶
计算机视觉
视觉特征
无损监测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于计算机视觉的茶叶色泽检测研究
来源期刊 农机化研究 学科 农学
关键词 茶叶 色泽检测 计算机视觉
年,卷(期) 2019,(6) 所属期刊栏目 新技术应用
研究方向 页码范围 209-213
页数 5页 分类号 S126
字数 2644字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 帅晓华 长江职业学院电商物流学院 25 33 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (73)
共引文献  (179)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(1)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(10)
  • 参考文献(2)
  • 二级参考文献(8)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(7)
  • 参考文献(0)
  • 二级参考文献(7)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(7)
  • 参考文献(1)
  • 二级参考文献(6)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(8)
  • 参考文献(1)
  • 二级参考文献(7)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
茶叶
色泽检测
计算机视觉
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
农机化研究
月刊
1003-188X
23-1233/S
大16开
黑龙江哈尔滨市哈平路156号
14-324
1979
chi
出版文献量(篇)
14318
总下载数(次)
39
总被引数(次)
94283
论文1v1指导