基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对人脸姿态偏转较大导致人脸特征点定位精度低的问题,提出了多视角人脸特征点定位算法,采用随机森林局部学习与全局线性回归相结合的级联姿态回归(Cascaded Pose Regression,CPR)人脸特征点定位模型,在不同的人脸姿态视角下建立不同的模型,以多模型代替单一模型来提高人脸特征点定位的精度.首先采用CPR模型对不同视角下的人脸建立不同的模型;然后采用多视角生成模型(Multi-View Generative Model,MVGM)来评估输入人脸图片的姿态;最后根据评估的姿态选择相对应的模型,进而实现特征点的精确定位.仿真实验结果表明,相比于现有的几种人脸特征点定位算法,所提算法实现了更精确的定位效果.
推荐文章
多模型ASM及其在人脸面部特征点定位中的应用
主动形状模型
log-gabor小波
特征点定位
利用形状估计的人脸特征点定位算法
核回归
形状估计
人脸特征点定位
采样先验
形状约束
基于动态多视角模型集成策略的人脸特征点定位算法
多视角模型
人脸特征点定位
级联回归模型
姿态分类算法
CASPN:基于级联空间金字塔的人脸关键点定位网络
空洞卷积
空间金字塔
级联网络
人脸关键点定位
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多视角级联回归模型人脸特征点定位
来源期刊 计算机工程与应用 学科 工学
关键词 人脸特征点定位 级联姿态回归 随机森林 全局线性回归 多视角生成模型
年,卷(期) 2019,(10) 所属期刊栏目 图形图像处理
研究方向 页码范围 199-204
页数 6页 分类号 TP391
字数 5381字 语种 中文
DOI 10.3778/j.issn.1002-8331.1802-0226
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 于凤芹 江南大学物联网工程学院 143 708 12.0 18.0
2 陈莹 江南大学物联网工程学院 101 401 10.0 14.0
3 贾项南 江南大学物联网工程学院 3 5 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (7)
参考文献  (6)
节点文献
引证文献  (2)
同被引文献  (9)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸特征点定位
级联姿态回归
随机森林
全局线性回归
多视角生成模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导