作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文利用Spark分布式计算框架,提出了一种基于分布式卷积神经网络的车型识别算法.该算法通过改进卷积核参数和丢弃相似特征图来优化网络,通过改进分布式梯度下降来减少master和slave同步通信量,从而提高了收敛速度和性能.试验结果表明,该算法可有效提高车型分类的速度和精度.
推荐文章
基于深度卷积神经网络的车型识别研究
深度学习
卷积神经网络
支持向量机
高速公路
车型识别
基于改进的卷积神经网络LeNet-5的车型识别方法
深度学习
卷积神经网络
LeNet-5
车型识别
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于分布式卷积神经网络的车型识别算法研究
来源期刊 河南科技 学科 工学
关键词 车型识别 卷积神经网络 分布式梯度下降 Spark
年,卷(期) 2019,(20) 所属期刊栏目 信息技术
研究方向 页码范围 28-31
页数 4页 分类号 TP391.41|TP183
字数 3466字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 董伊明 郑州大学护理学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (20)
参考文献  (3)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
车型识别
卷积神经网络
分布式梯度下降
Spark
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河南科技
旬刊
1003-5168
41-1081/T
16开
河南省郑州市
36-175
1976
chi
出版文献量(篇)
31576
总下载数(次)
98
总被引数(次)
44105
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导