基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
决策树算法是数据挖掘领域的一个研究热点.决策树代表的是对象属性与对象值之间的一种映射关系,以树状结构表现,在实际中应用广泛.笔者首先介绍了信息论,重点阐述了三种典型的决策树分类算法原理,并分析了不同算法的优缺点,最后介绍了基于决策树的随机森林算法及其在机器学习中的作用.
推荐文章
随机决策树
随机过程
决策树
效用
风险
C5.0决策树Hyperion影像森林类型精细分类方法
森林经理学
Hyperion
C5.0决策树
分层分类
森林类型分类
高光谱
滑坡成因决策树挖掘
数据挖掘
决策树
滑坡
基于回归决策树和ASTER卫星影像的城市森林研究
森林经理学
城市森林
回归决策树
通州新城
城市森林丰度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 决策树与随机森林
来源期刊 信息与电脑 学科 工学
关键词 信息论 分类器 决策树 集成学习 随机森林
年,卷(期) 2019,(17) 所属期刊栏目 算法语言
研究方向 页码范围 43-45
页数 3页 分类号 TP181
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈龙然 6 37 2.0 6.0
2 陈伽洛 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (85)
共引文献  (19)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1948(1)
  • 参考文献(1)
  • 二级参考文献(0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(5)
  • 参考文献(0)
  • 二级参考文献(5)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(9)
  • 参考文献(0)
  • 二级参考文献(9)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(4)
  • 参考文献(3)
  • 二级参考文献(1)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
信息论
分类器
决策树
集成学习
随机森林
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息与电脑
半月刊
1003-9767
11-2697/TP
北京市东城区北河沿大街79号
chi
出版文献量(篇)
16624
总下载数(次)
72
总被引数(次)
19907
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导