基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的ARIMA模型已广泛应用于研究年际变化形成的时间序列,然而在研究中,年内和季内变化所带来的影响往往被忽视.为了考虑序列的年内和季内变化,对ARIMA模型进行改进,提升预测精度.通过实例分析,显示改进的ARIMA模型的预测效果最好.
推荐文章
基于ARIMA模型的滑坡位移预测
时间序列
变形趋势
位移预测
滑坡
改进的ARIMA模型预测精度分析
ARIMA
预测
指数平滑
精度分析
拟合
回归
时间序列
基于ARIMA模型的网络流量预测
业务管理
流量预测
ARIMA模型
ARMA模型
ARIMA?SVM的物流需求预测模型
物流管理
随机性变化特点
ARIMA?SVM
权值的确定
预测模型
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进ARIMA模型及其预测
来源期刊 福建质量管理 学科
关键词 ARIMA模型 GM(1,1)模型 改进的ARIMA模型
年,卷(期) 2019,(11) 所属期刊栏目 学术探讨
研究方向 页码范围 268
页数 1页 分类号
字数 1288字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈玉松 商丘工学院基础部 7 1 1.0 1.0
2 李晨 商丘工学院基础部 5 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (17)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1958(1)
  • 参考文献(1)
  • 二级参考文献(0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2019(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(1)
  • 参考文献(0)
  • 二级参考文献(1)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ARIMA模型
GM(1,1)模型
改进的ARIMA模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
福建质量管理
半月刊
1673-9604
35-1087/F
大16开
福建省福州市鼓楼区洪山园路洪山科技园福建节能大厦1号楼2层
1980
chi
出版文献量(篇)
25858
总下载数(次)
444
总被引数(次)
4005
论文1v1指导