基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
新闻事件检测是自动检测新闻文本中出现的相关事件,需要大量人力设计模板,而且难以获取句中隐含的语义信息,识别触发词时多存在歧义.为解决以上问题,利用融合依存句法信息的卷积神经网络(Dependency Parsing Convolutional Neural Networks,DPCNN),针对句子级别越南语新闻事件进行检测.该模型在编码过程中融合了词义、位置信息、词性信息和命名实体信息,利用传统卷积编码连续词之间的特征,利用融合依存句法信息的卷积编码非连续词之间的特征,再融合两部分特征作为事件编码,进而实现事件检测.实验结果表明,该方法在越南语新闻事件检测中取得了很好的效果.
推荐文章
基于最大熵的越南语新闻事件元素抽取方法
越南语
最大熵
机器学习
新闻事件元素抽取
越南语短语树到依存树的转换研究
句法分析
中心子节点过滤表
短语结构
依存结构
树库
融合越南语语言特征与改进PCFG的越南语短语树库构建
越南语
短语结构树
概率上下文无关文法
语法规则集
树库
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合依存信息和卷积神经网络的越南语新闻事件检测
来源期刊 南京大学学报(自然科学版) 学科 工学
关键词 新闻事件检测 依存句法信息 卷积神经网络 越南语
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 125-131
页数 7页 分类号 TP391
字数 5238字 语种 中文
DOI 10.13232/j.cnki.jnju.2020.01.014
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (5)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(6)
  • 参考文献(5)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
新闻事件检测
依存句法信息
卷积神经网络
越南语
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京大学学报(自然科学版)
双月刊
0469-5097
32-1169/N
江苏省南京市南京大学
chi
出版文献量(篇)
2526
总下载数(次)
6
总被引数(次)
23071
相关基金
云南省自然科学基金
英文译名:
官方网址:
项目类型:面上项目
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导