基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统用户意图识别主要使用基于模板匹配或人工特征集合方法导致成本高、扩展性低的问题,提出了一种基于BERT词向量和BiGRU-Attention的混合神经网络意图识别模型.首先使用BERT预训练的词向量作为输入,通过BiGRU对问句进行特征提取,再引入Attention机制提取对句子含义有重要影响力的词的信息以及分配相应的权重,获得融合了词级权重的句子向量,并输入到softmax分类器,实现意图分类.爬取语料实验结果表明,BERT-BiGRU-Attention方法性能均优于传统的模板匹配、SVM和目前效果较好的CNN-LSTM深度学习组合模型.提出的新方法能有效提升意图识别模型的性能,提高在线健康信息服务质量、为在线健康社区问答系统提供技术支撑.
推荐文章
基于DenseNet的无人汽车制动意图识别方法
DenseNet
无人汽车
制动意图
识别
深度分解
基于BiGRU-attention神经网络的文本情感分类模型
文本情感分类
注意力机制
双向门控循环神经网络
一种基于在线学习的弹道识别方法
弹道识别
支持向量机(SVM)
在线优化
Pegasos
一种基于用户行为状态特征的流量识别方法
流量识别
用户行为
行为状态特征
主题模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BERT-BiGRU-Attention的在线健康社区用户意图识别方法
来源期刊 河北科技大学学报 学科 工学
关键词 自然语言处理 意图识别 在线健康社区 BERT词向量 BiGRU Attention机制
年,卷(期) 2020,(3) 所属期刊栏目 机械、电子与信息科学
研究方向 页码范围 225-232
页数 8页 分类号 TP391
字数 5663字 语种 中文
DOI 10.7535/hbkd.2020yx03004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 严馨 昆明理工大学信息工程与自动化学院 40 122 5.0 10.0
5 迟海洋 昆明理工大学信息工程与自动化学院 1 0 0.0 0.0
9 周枫 昆明理工大学信息工程与自动化学院 41 74 5.0 7.0
13 徐广义 5 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (2)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(6)
  • 参考文献(2)
  • 二级参考文献(4)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(3)
  • 参考文献(2)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
自然语言处理
意图识别
在线健康社区
BERT词向量
BiGRU
Attention机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河北科技大学学报
双月刊
1008-1542
13-1225/TS
大16开
河北省石家庄市裕华东路70号
1980
chi
出版文献量(篇)
2212
总下载数(次)
6
总被引数(次)
14739
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导