基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Manual inspections of infrastructures such as highway bridge, pavement, dam, and multistoried garage ceiling are time consuming, sometimes can be life threatening, and costly. An automated computerized system can reduce time, faulty inspection, and cost of inspection. In this study, we developed a computer model using deep learning Convolution Neural Network (CNN), which can be used to automatically detect the crack and non-crack type structure. The goal of this research is to allow application of state-of-the-art deep neural network and Unmanned Aerial Vehicle (UAV) technologies for highway bridge girder inspection. As a pilot study of implementing deep learning in Bridge Girder, we study the recognition, length, and location of crack in the structure of the UTC campus old garage concrete ceiling slab. A total of 2086 images of crack and non-crack were taken from UTC Old Library parking garage ceiling using handheld mobile phone and drone. After training the model shows 98% accuracy with crack and non-crack types of structures.
推荐文章
基于Faster rcnn的棉麻纱混纺比自动检测
Faster rcnn
目标检测
棉纤维
麻纤维
混纺比
图像
模型
基于Faster RCNN的双目视觉焊缝匹配研究
FasterRCNN
双目视觉
特征点
焊缝匹配
基于改进Faster RCNN的安全帽佩戴检测研究
安全帽佩戴检测
FasterRCNN
多尺度训练
在线困难样本挖掘
多部件结合
基于Faster RCNN的绝缘子自爆缺陷识别
绝缘子
无人机巡检
深度学习
自爆
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Bridge Girder Crack Assessment Using Faster RCNN Inception V2 and Infrared Thermography
来源期刊 交通科技期刊(英文) 学科 交通运输
关键词 Bridge GIRDER CONVOLUTION Neural Network CRACK Detection Structural Health Monitoring Infrared THERMOGRAPHY
年,卷(期) jtkjqkyw,(2) 所属期刊栏目
研究方向 页码范围 110-127
页数 18页 分类号 U44
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Bridge
GIRDER
CONVOLUTION
Neural
Network
CRACK
Detection
Structural
Health
Monitoring
Infrared
THERMOGRAPHY
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
交通科技期刊(英文)
季刊
2160-0473
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
254
总下载数(次)
0
论文1v1指导