原文服务方: 中国石油大学学报(自然科学版)       
摘要:
现有油藏储量预测方法的精度远不能满足实际应用的需求.受循环神经网络和注意力机制的启发,提出一种专注智能油藏储量预测的深度时空注意力模型.该模型通过时间注意力模型来捕获输入数据之间的关键信息,空间注意力模型捕获隐藏状态之间的关系紧密程度,能够缓解数据波动对预测结果的不利影响,从而大幅减小预测误差.结果表明,相比传统方法和已有的深度学习方法,该模型预测精度有显著提高,为今后油藏储量预测提供一种更优的选择.
推荐文章
面向社交媒体的分级注意力表情符预测模型
表情符预测
标签
分级预测
注意力机制
社交媒体
基于注意力时空解耦3D卷积LSTM的视频预测
视频预测
卷积LSTM
注意力机制
时空解耦
重采样
多特征注意力的航空发动机剩余寿命预测模型
航空发动机
膨胀卷积
残差连接
多特征注意力
剩余寿命预测
基于注意力机制的音乐深度推荐算法
深度学习
注意力机制
音乐推荐
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 专注智能油藏储量预测的深度时空注意力模型
来源期刊 中国石油大学学报(自然科学版) 学科
关键词 油藏储量预测 循环神经网络 注意力机制 深度时空注意力模型
年,卷(期) 2020,(4) 所属期刊栏目 石油+人工智能
研究方向 页码范围 77-82
页数 6页 分类号 TE155
字数 语种 中文
DOI 10.3969/j.issn.1673-5005.2020.04.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赫俊民 4 12 1.0 3.0
2 张益政 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (19)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(2)
  • 参考文献(1)
  • 二级参考文献(1)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(2)
  • 参考文献(0)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
油藏储量预测
循环神经网络
注意力机制
深度时空注意力模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国石油大学学报(自然科学版)
双月刊
1673-5005
37-1441/TE
大16开
山东省青岛市黄岛区长江西路66号
1959-10-01
中文
出版文献量(篇)
4211
总下载数(次)
0
总被引数(次)
65195
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导