基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有检测方法对算法生成的恶意域名检测效率不高,尤其对几种难检测的恶意域名类型检测率低的问题,提出了一种改进的基于卷积神经网络的恶意域名检测算法.该算法在现有的卷积神经网络模型的基础上,增加了提取更深层字符级特征的卷积分支,从而同时提取恶意域名的浅层和深层字符级特征并融合;引入一种聚焦损失函数以解决样本难易程度和数量的双重不平衡导致检测率低的问题,可提高对难样本的检测准确率.改进后的算法对20种恶意域名的平均检测准确率为97.62%,与原算法相比提高了0.94%;对4种较难检测域名的检测准确率分别提高了3.71%、4.6%、11.18% 和17.8%.实验结果表明,改进的算法能够提高对恶意域名的检测准确率,尤其能够显著提升对部分难检测域名的检测准确率.
推荐文章
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
尺度无关的级联卷积神经网络人脸检测算法
级联卷积神经网络
空间金字塔池化
人脸检测
一种基于深度神经网络的基音检测算法
基音检测
深度神经网络
监督学习
维特比算法
一种基于卷积神经网络的结构损伤检测方法
卷积神经网络
损伤识别
加速度
抗噪性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进的卷积神经网络恶意域名检测算法
来源期刊 西安电子科技大学学报(自然科学版) 学科 工学
关键词 卷积神经网络 域名生成算法 深度学习 信息安全
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 37-43
页数 7页 分类号 TP309
字数 4984字 语种 中文
DOI 10.19665/j.issn1001-2400.2020.01.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 戴跃伟 南京理工大学自动化学院 109 931 17.0 24.0
3 刘光杰 南京理工大学自动化学院 59 357 11.0 15.0
7 杨路辉 南京理工大学自动化学院 2 0 0.0 0.0
8 刘伟伟 南京理工大学自动化学院 9 10 2.0 2.0
11 翟江涛 南京信息工程大学电子与信息工程学院 2 0 0.0 0.0
12 白惠文 南京理工大学自动化学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (3)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(5)
  • 参考文献(1)
  • 二级参考文献(4)
2018(4)
  • 参考文献(1)
  • 二级参考文献(3)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
域名生成算法
深度学习
信息安全
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安电子科技大学学报(自然科学版)
双月刊
1001-2400
61-1076/TN
西安市太白南路2号349信箱
chi
出版文献量(篇)
4652
总下载数(次)
5
总被引数(次)
38780
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
江苏省自然科学基金
英文译名:Natural Science Foundation of Jiangsu Province
官方网址:http://www.jsnsf.gov.cn/News.aspx?a=37
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导