基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
故障诊断是一种广泛应用于企业的工程技术,有效的故障诊断可以为企业节省大量的人力和物力的开销。传统的文本故障诊断大多采用余弦相似度算法,当匹配出错、数据靠后以及数据量较大时,往往无法满足客户的实时需求。因此,本文采用支持向量机算法对用户输入的故障描述文本语句进行粗划分,筛选出具有相似特征的大类。在此基础上,依据粗分类结果,进一步使用余弦相似度算法进行精确匹配,从而选取匹配相似度最高的故障产生原因和防治措施以反馈客户。实验结果表明,本文所提的故障诊断算法可以有效地进行故障诊断,为企业带来可观的经济效益。
推荐文章
基于遗传算法和支持向量机的故障诊断方法
最小二乘支持向量机
自适应遗传算法
机载电气盒
故障诊断
基于PCA和HMM—支持向量机的故障诊断方法设计
故障诊断
主成分分析
支持向量机
隐形马尔科夫
基于粒子群算法和支持向量机的故障诊断研究
最小二乘支持向量机
粒子群算法
故障诊断
全局最优
基于小波包和支持向量机的齿轮故障诊断
小波包
支持向量机
齿轮
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量机和余弦相似度的故障诊断方法
来源期刊 数据挖掘 学科 工学
关键词 支持向量机 余弦相似度 故障诊断方法
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 136-142
页数 7页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (0)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2001(2)
  • 参考文献(2)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量机
余弦相似度
故障诊断方法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据挖掘
季刊
2163-145X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
140
总下载数(次)
1
总被引数(次)
0
论文1v1指导