基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
动态变化的图数据在现实应用中广泛存在,有效地对动态网络异常数据进行挖掘,具有重要的科学价值和实践意义.大多数传统的动态网络异常检测算法主要关注于网络结构的异常,而忽视了节点和边的属性以及网络变化的作用.提出一种基于图神经网络的异常检测算法,将图结构、属性以及动态变化的信息引入模型中,来学习进行异常检测的表示向量.具体地,改进图上无监督的图神经网络框架DGI,提出一种面向动态网络无监督表示学习算法Dynamic-DGI.该方法能够同时提取网络本身的异常特性以及网络变化的异常特性,用于表示向量的学习.实验结果表明,使用该算法学得的网络表示向量进行异常检测,得到的结果优于最新的子图异常检测算法SpotLight,并且显著优于传统的网络表示学习算法.除了能够提升异常检测的准确度,该算法也能够挖掘网络中存在的有实际意义的异常.
推荐文章
基于分层概率图的动态网络在线异常检测方法
分层概率图
动态网络
在线异常检测
统计假设检验
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
基于模糊神经网络的故障检测算法
网络系统
故障检测
模糊神经网络
信息熵
基于改进ADALINE神经网络的DTMF检测算法
神经网络
LMS算法
DTMF解码
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于图神经网络的动态网络异常检测算法
来源期刊 软件学报 学科 工学
关键词 动态网络异常检测 图神经网络 图深度学习
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 748-762
页数 15页 分类号 TP18
字数 12480字 语种 中文
DOI 10.13328/j.cnki.jos.005903
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张岩 北京大学信息科学技术学院 155 1896 24.0 39.0
2 王国仁 北京理工大学计算机学院 18 29 3.0 5.0
3 李荣华 北京理工大学计算机学院 2 0 0.0 0.0
4 郭嘉琰 北京大学信息科学技术学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (46)
共引文献  (5)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(6)
  • 参考文献(1)
  • 二级参考文献(5)
2015(6)
  • 参考文献(2)
  • 二级参考文献(4)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(5)
  • 参考文献(3)
  • 二级参考文献(2)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
动态网络异常检测
图神经网络
图深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导