作者:
原文服务方: 计算技术与自动化       
摘要:
脑电信号的非线性、非平稳性和微弱性造成对运动想象脑电信号的分类存在特征提取困难,分类结果不理想,分类性能受噪声影响明显等问题.为此,提出了一种基于因子分析(Factor Analysis,FA)模型的噪声稳健运动脑电信号分类方法.首先利用FA模型对脑电信号中存在的噪声分量进行抑制,针对重构信号可分性较差的问题,将其转换至功率谱域,进而提取三维能够反映不同运动状态的功率谱特征,最后利用支撑向量机(Support Vector Machine,SVM)分类器对所提特征向量进行分类判决.基于Graz数据的验证实验表明,所提方法可以明显提升低信噪比条件下的分类性能,在实际工程应用中具备较强的推广泛化能力.
推荐文章
基于最佳小波包的表面肌电信号分类方法
表面肌电信号
最佳小波包
相对能量
Fisher线性判别
基于波形特征和SVM的心电信号自动分类方法研究
波形特征
支持向量机(SVM)
自动分类
基于经验模态分解和SVM的脑电信号分类方法
脑电信号分类
经验模态分解
支撑向量机
特征提取
基于ABC-SVM的运动想象脑电信号模式分类
脑电信号
人工蜂群算法
支持向量机
正则化共空间模式
模式分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于因子分析模型的噪声稳健脑电信号分类方法
来源期刊 计算技术与自动化 学科
关键词 脑电信号分类 因子分析模型 特征提取 噪声稳健
年,卷(期) 2020,(1) 所属期刊栏目 计算机软件及应用
研究方向 页码范围 181-188
页数 8页 分类号 TP39
字数 语种 中文
DOI 10.16339/j.cnki.jsjsyzdh.202001036
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭锦强 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (48)
共引文献  (84)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(2)
  • 二级参考文献(1)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(9)
  • 参考文献(0)
  • 二级参考文献(9)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
脑电信号分类
因子分析模型
特征提取
噪声稳健
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算技术与自动化
季刊
1003-6199
43-1138/TP
16开
1982-01-01
chi
出版文献量(篇)
2979
总下载数(次)
0
论文1v1指导