基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统的时域、频域和时频域参数提取方法,难以从滚动轴承振动信号中提取出丰富的故障特征问题,提出通过多尺度排列熵提取故障特征,并结合改进的多分类相关向量机进行故障诊断的方法.由于多分类相关向量机的核函数参数不具有自适应选择的能力对故障诊断精度有较大影响,通过一种新智能优化算法-蝗虫优化算法改进多分类相关向量机,实现多分类相关向量机的自适应优化故障诊断.采用美国西储大学的试验数据验证表明,提出的优化故障诊断模型能够实现滚动轴承不同类型的故障诊断和不同故障程度的辨识,与粒子群优化多分类相关向量机的故障诊断模型相比,提出的故障诊断模型准确率达到了100%.
推荐文章
基于多尺度熵的滚动轴承故障诊断方法
样本熵
多尺度熵
滚动轴承
故障诊断
复杂性
基于改进HHT能量熵和SVM的滚动轴承故障诊断
希尔伯特-黄变换
能量熵
支持向量机
滚动轴承
故障诊断
基于LCD互近似熵和相关向量机的轴承故障诊断方法
局部特征尺度分解
互近似熵
相关向量机
故障诊断
滚动轴承
基于小波包熵和ISODATA的滚动轴承故障诊断
故障诊断
滚动轴承
小波包熵
WPE-ISODATA
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多尺度排列熵和改进多分类相关向量机的滚动轴承故障诊断方法
来源期刊 电子测量与仪器学报 学科 工学
关键词 滚动轴承 故障诊断 多尺度排列熵 多分类相关向量机 蝗虫优化算法
年,卷(期) 2020,(2) 所属期刊栏目 信息处理技术
研究方向 页码范围 20-28
页数 9页 分类号 TP181|TH133.3|TH13
字数 语种 中文
DOI 10.13382/j.jemi.B1902461
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵小强 66 312 10.0 13.0
2 陈鹏 4 0 0.0 0.0
3 朱奇先 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (145)
共引文献  (264)
参考文献  (23)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(11)
  • 参考文献(0)
  • 二级参考文献(11)
2007(12)
  • 参考文献(1)
  • 二级参考文献(11)
2008(14)
  • 参考文献(0)
  • 二级参考文献(14)
2009(16)
  • 参考文献(1)
  • 二级参考文献(15)
2010(7)
  • 参考文献(2)
  • 二级参考文献(5)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2012(6)
  • 参考文献(2)
  • 二级参考文献(4)
2013(17)
  • 参考文献(4)
  • 二级参考文献(13)
2014(9)
  • 参考文献(1)
  • 二级参考文献(8)
2015(11)
  • 参考文献(3)
  • 二级参考文献(8)
2016(11)
  • 参考文献(3)
  • 二级参考文献(8)
2017(11)
  • 参考文献(2)
  • 二级参考文献(9)
2018(5)
  • 参考文献(2)
  • 二级参考文献(3)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
滚动轴承
故障诊断
多尺度排列熵
多分类相关向量机
蝗虫优化算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量与仪器学报
月刊
1000-7105
11-2488/TN
大16开
北京市东城区北河沿大街79号
80-403
1987
chi
出版文献量(篇)
4663
总下载数(次)
23
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导