基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对高分辨率极化SAR数据特征分布不再符合同质区域假设,进而导致基于统计分布的极化SAR影像非监督分类方法精度下降的问题,将具有广泛适用性的KummerU分布嵌入粒子群寻优聚类算法,提出了新的极化SAR影像非监督分类算法(PSO-KummerU方法):首先基于极化SAR统计特征对数据进行初分类,然后采用极化SAR统计特征与粒子群优化算法进一步进行聚类中心求解,分类准则部分采用KummerU距离改进代替传统的Wishart距离度量准则;采用3种非监督分类方法(H/α-Wishart、PSO-Wishart、PSO-KummerU方法)进行分类对比实验.实验结果表明:基于KummerU分布的PSO-KummerU方法与采用Wishart距离的聚类方法相比,目视效果明显改进,整体分类精度提高14%以上.
推荐文章
高分辨率SAR影像在海岛监视监测中的应用
高分辨率合成孔径雷达
海岛监视监测
海岛保护
遥感影像
海洋卫星
高分辨率遥感影像自动分类方法研究
高分辨率影像
遥感
土地利用
自动分类
高分辨率SAR杂波模拟
雷达杂波
建模
仿真
MNLT
面向高分辨率遥感影像分类的分层策略研究
高分辨率遥感影像
易康软件
分层策略
精度分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 高分辨率极化SAR影像KummerU分布非监督分类方法
来源期刊 华南师范大学学报(自然科学版) 学科 地球科学
关键词 KummerU分布 极化SAR 高分辨率 粒子群算法 非监督分类
年,卷(期) 2020,(1) 所属期刊栏目 地理科学与技术
研究方向 页码范围 85-90
页数 6页 分类号 P237
字数 4163字 语种 中文
DOI 10.6054/j.jscnun.2020013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何汉武 广东工业大学机电工程学院 107 1198 17.0 31.0
3 黄铁兰 广东工贸职业技术学院测绘遥感信息学院 26 46 4.0 5.0
4 朱腾 广东工贸职业技术学院测绘遥感信息学院 3 0 0.0 0.0
7 张坡 广东工贸职业技术学院计算机与信息工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (20)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(8)
  • 参考文献(2)
  • 二级参考文献(6)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(6)
  • 参考文献(2)
  • 二级参考文献(4)
2016(5)
  • 参考文献(2)
  • 二级参考文献(3)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
KummerU分布
极化SAR
高分辨率
粒子群算法
非监督分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华南师范大学学报(自然科学版)
双月刊
1000-5463
44-1138/N
16开
广州市石牌华南师范大学
1956
chi
出版文献量(篇)
2704
总下载数(次)
9
总被引数(次)
15292
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导