基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过对复杂环境下声音识别技术进行研究,本文提出了美尔谱系数(MFSC)与卷积神经网络(CNN)相组合的环境声音识别方法.对声音事件提取其MFSC特征,将特征参数作为输入送入设计好的CNN模型中对声音事件进行分类.实验数据集采用ESC-10,将构建的卷积神经网络模型与随机森林、支持向量机(SVM)、深度神经网络(DNN)及DCASE比赛中常用的三种识别模型进行对比实验.实验结果表明,在相同数据集下,本文所设计的美尔谱系数与卷积神经网络相组合的环境声音识别方法相较传统的声音识别方法在识别率上分别有13.1%,18.3%,15.7%的提升,相较于DCASE比赛中的三种常用识别模型,本文所设计识别模型识别率及识别效率均有明显的优势.
推荐文章
基于卷积神经网络的交通声音事件识别方法
Gammatone滤波器
卷积神经网络
音频事件识别
公路交通环境
声音数字信号
子带滤波
基于卷积神经网络的未知协议识别方法
深度学习
机器学习
卷积神经网络
未知协议识别
基于卷积神经网络的ECG信号识别方法
ECG信号识别
短时傅里叶变换
卷积神经网络
支持向量机
改进卷积神经网络的手写试卷分数识别方法
分数统计
数字识别
卷积神经网络
主成分分析
贝叶斯分类器
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 美尔谱系数与卷积神经网络相组合的环境声音识别方法
来源期刊 信号处理 学科 工学
关键词 卷积神经网络 美尔谱系数 环境声音识别
年,卷(期) 2020,(6) 所属期刊栏目 论文
研究方向 页码范围 1020-1028
页数 9页 分类号 TN912.34
字数 6126字 语种 中文
DOI 10.16798/j.issn.1003-0530.2020.06.025
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谢晓兰 桂林理工大学广西嵌入式技术与智能系统重点实验室 67 232 8.0 14.0
5 刘亚荣 桂林理工大学广西嵌入式技术与智能系统重点实验室 26 76 5.0 8.0
9 刘鑫 桂林理工大学信息科学与工程学院 3 0 0.0 0.0
10 黄昕哲 桂林理工大学信息科学与工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (16)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
美尔谱系数
环境声音识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
总被引数(次)
32728
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导