基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
围绕有效整合城市停车资源,提高现有车位存量利用率的需求,构建了一种基于NB-IoT技术的车位预测系统.该系统采用NB-IoT技术进行信息采集与传输实现车位信息的共享;考虑到车位状态信息实时变化的特性,用历史车位占用数据来建立车位预测模型,推测出未来短时内车位变化趋势.为了提高车位预测的精度,采用遗传算法(Genetic algorithm,GA)优化反向传播(Back propagtion,BP)神经网络建立GA-BP神经网络车位预测模型.以某地下停车场历史数据为例进行仿真实验,研究结果表明:车位预测模型预测值与实际值相近且趋势保持一致,能够有效准确的预测车位状态变化,具有较高的精度.
推荐文章
基于GA-BP神经网络的电力系统负荷预测研究
电力系统
负荷预测
BP神经网络
遗传算法
GA-BP
基于GA-BP神经网络算法的马铃薯晚疫病预测模型
马铃薯晚疫病
遗传算法
BP神经网络
归一化处理
基于GA-BP神经网络的城市用水量预测
城市用水
用水量预测
BP神经网络
预测建模
网络训练
仿真分析
基于GA-BP神经网络的粗粒土渗透系数预测
粗粒土
渗透系数
BP神经网络
遗传算法
孔隙比
级配
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于NB-IoT技术和GA-BP神经网络的车位预测系统
来源期刊 南京航空航天大学学报 学科 工学
关键词 智能停车系统 NB-IoT技术 遗传算法-反向传播神经网络 车位预测
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 454-459
页数 6页 分类号 TH165
字数 4670字 语种 中文
DOI 10.16356/j.1005-2615.2020.03.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 梁睿君 南京航空航天大学机电学院 26 208 8.0 14.0
2 李伟 南京航空航天大学机电学院 96 498 11.0 19.0
3 宋丹 南京航空航天大学机电学院 4 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (85)
共引文献  (233)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(11)
  • 参考文献(0)
  • 二级参考文献(11)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(10)
  • 参考文献(1)
  • 二级参考文献(9)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(8)
  • 参考文献(0)
  • 二级参考文献(8)
2016(9)
  • 参考文献(0)
  • 二级参考文献(9)
2017(10)
  • 参考文献(4)
  • 二级参考文献(6)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
智能停车系统
NB-IoT技术
遗传算法-反向传播神经网络
车位预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京航空航天大学学报
双月刊
1005-2615
32-1429/V
大16开
南京市御道街29号1016信箱
28-140
1956
chi
出版文献量(篇)
3509
总下载数(次)
9
总被引数(次)
36115
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导