作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着生活水平的日益提高,人们的精神生活越来越丰富多彩。电影作为人们追求精神文化和文化创新的一部分,成为关注的焦点。在快节奏的社会环境下,能够在较短的时间内,选择喜欢的电影,无疑是最好的情况。为提高人们搜索和选择电影的质量,方式之一是对已有的电影按照主题进行分类。对文本按照主题分类的方式,存在有监督和无监督学习两种方式。有监督的学习,需要人工标注,十分耗时耗力。无监督学习,可以主动根据电影内容进行划分类别,不仅省时,而且降低了人工标注带来的经济消费。因此,本文从电影内容角度出发,提出使用K-Means聚类方法,对电影进行无监督分类;最后,可视化分类结果,每一类别下,电影有共同的主题。
推荐文章
基于聚类分析的K-means算法研究及应用
数据挖掘
聚类分析
数据库
聚类算法
基于Spark的并行K-means算法研究
Spark
K-means
PSO
迭代计算
基于变异的k-means聚类算法
聚类
mk-means算法
变异
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于电影内容的K-Means聚类分析
来源期刊 统计学与应用 学科 文学
关键词 电影内容 主题分类 无监督学习 K-MEANS聚类
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 265-276
页数 12页 分类号 J90
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 袁丽娟 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电影内容
主题分类
无监督学习
K-MEANS聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学与应用
双月刊
2325-2251
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
512
总下载数(次)
3
总被引数(次)
0
论文1v1指导