基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了满足医疗行业大量针式票据录入工作的需求,解决传统人工录入方式效率低、精度低的问题,构建了双网络模型下的针式打印字体医疗票据识别方法.传统目标检测网络的参数同时描述了目标的位置与类别信息,其用于大规模定位识别任务时由于参数量庞大导致网络极难以训练,为解决以上问题,提出了双网络模型方法以联合FasterRCNN与深度卷积神经网络实现票据中字符的定位与识别,双网络将定位与识别分步进行以降低任务的复杂度.实验采用自建票据数据集与字库数据集进行网络训练,利用现场采集的票据验证了算法的有效性,通过测试不同参数下模型的性能来选定最佳参数,并对比分析了该方法与传统方法的识别效果.实际测试表明,识别准确率达95.4%,召回率达92.7%,速度达0.76 s/张.
推荐文章
复杂背景下的票据字符类型识别方法
银行票据字符
字符类型识别
字符分割
字符颜色判定
识别器设计
图像测试
基于模糊云理论模型的智能配电云网络化控制识别方法
模糊云理论
感知
智能配电控制
电力云
网络化控制
基于HMM和LVQ网络混合模型的语音识别方法
语音识别
隐马尔可夫模型
学习向量量化
混合模型
基于深度卷积特征的水下目标智能识别方法
无人水下航行器
智能识别
深度卷积神经网络
迁移学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 双网络模型下的智能医疗票据识别方法
来源期刊 计算机工程与应用 学科 工学
关键词 深度学习 卷积神经网络 票据识别 票据校正 字符识别 文本定位
年,卷(期) 2020,(12) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 141-148
页数 8页 分类号 TP391.43
字数 6017字 语种 中文
DOI 10.3778/j.issn.1002-8331.1903-0192
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (83)
共引文献  (38)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(6)
  • 参考文献(2)
  • 二级参考文献(4)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(8)
  • 参考文献(0)
  • 二级参考文献(8)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(18)
  • 参考文献(2)
  • 二级参考文献(16)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
卷积神经网络
票据识别
票据校正
字符识别
文本定位
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导