基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在推荐系统中,传统的矩阵分解无法提取用户和物品特征,而神经协同过滤(NCF)在分解模型中增加多层感知器,但不能有效利用用户和物品ID之外的辅助信息.为此,提出一种新的条件卷积方法.通过将物品特征作为输入,将用户特征作为卷积核,达到权值不共享的目的,使得条件卷积具有更强的特征提取和组合能力以及不增加参数量的特性.在此基础上,条件卷积能够融入多种辅助信息进行个性化推荐.实验结果表明,与NCF模型相比,该方法在隐性反馈数据中推荐命中率提升3.11%,在显性反馈数据中评分预测误差降低2.47%.
推荐文章
个性化服务中网页推荐模型的研究
信息过滤
数据挖掘
群体兴趣
网页推荐
大数据个性化推荐分析
大数据
个性化推荐
兴趣爱好
推荐算法
协同过滤
混合推荐
基于读者个性化特征的图书馆书目推荐
读者
个性化特征
图书馆书目
协同过滤
兴趣模型
推荐业务
人工心理模型在个性化商品推荐系统中的应用
人工智能
推荐系统
数量化Ⅰ类理论
人工心理
个性化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 用于个性化推荐的条件卷积隐因子模型
来源期刊 计算机工程 学科 工学
关键词 推荐系统 深度神经网络 神经协同过滤 条件卷积 矩阵分解
年,卷(期) 2020,(4) 所属期刊栏目 人工智能与模式识别
研究方向 页码范围 85-90,96
页数 7页 分类号 TP18
字数 4777字 语种 中文
DOI 10.19678/j.issn.1000-3428.0054209
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 倪宏 中国科学院声学研究所国家网络新媒体工程技术研究中心 122 525 9.0 16.0
5 盛益强 中国科学院声学研究所国家网络新媒体工程技术研究中心 12 22 3.0 4.0
9 李南星 中国科学院声学研究所国家网络新媒体工程技术研究中心 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (13)
参考文献  (5)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2020(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
推荐系统
深度神经网络
神经协同过滤
条件卷积
矩阵分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
论文1v1指导