基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
现有的基于深度学习的文本分类方法没有考虑文本特征的重要性和特征之间的关联关系,影响了分类的准确率.针对此问题,本文提出一种基于高效用神经网络(High Utility Neural Networks,HUNN)的文本分类模型,可以有效地表示文本特征的重要性及其关联关系.利用高效用项集挖掘(Mining High Utility Itemsets,MHUI)算法获取数据集中各个特征的重要性以及共现频率.其中,共现频率在一定程度上反映了特征之间的关联关系.将MHUI作为HUNN的挖掘层,用于挖掘每个类别数据中重要性和关联性强的文本特征.然后将这些特征作为神经网络的输入,再经过卷积层进一步提炼类别表达能力更强的高层次文本特征,从而提高模型分类的准确率.通过在6个公开的基准数据集上进行实验分析,提出的算法优于卷积神经网络(Convolutional Neural Networks,CNN),循环神经网络(Recurrent Neural Networks,RNN),循环卷积神经网络(Recurrent Convolutional Neural Networks,RCNN),快速文本分类(Fast Text Classifier,FAST),分层注意力网络(Hierarchical Attention Networks,HAN)等5个基准算法.
推荐文章
基于深度神经网络的中文新闻文本分类方法
深度神经网络
文本分类
中文新闻
自然语言处理
人工神经网络在文本分类中的应用
文本分类
人工神经网络
训练算法
基于词义消歧的卷积神经网络文本分类模型
文本分类
卷积神经网络
长短时记忆网络
特征提取
自然语言处理
基于神经网络的中文文本分类中的特征选择技术
文本分类
神经网络
主成分分析
特征选择
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于高效用神经网络的文本分类方法
来源期刊 电子学报 学科 工学
关键词 数据挖掘 关联规则 高效用项集 自然语言处理 文本分类 神经网络
年,卷(期) 2020,(2) 所属期刊栏目 学术论文
研究方向 页码范围 279-284
页数 6页 分类号 TP311
字数 4356字 语种 中文
DOI 10.3969/j.issn.0372-2112.2020.02.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李晶 武汉大学计算机学院 92 1000 19.0 28.0
2 常军 武汉大学计算机学院 7 12 2.0 3.0
3 宋成芳 武汉大学计算机学院 10 93 3.0 9.0
4 吴玉佳 武汉大学计算机学院 4 10 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (7)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(5)
  • 参考文献(1)
  • 二级参考文献(4)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数据挖掘
关联规则
高效用项集
自然语言处理
文本分类
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导