基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在智能交通系统中,针对车辆目标检测算法可移植性不高、检测速度较慢等问题,提出了一种基于SqueezeNet卷积神经网络的车辆检测方法.通过融合SqueezeNet与SSD(single shot multibox detector)算法的车辆检测方法,在UA-DETRAC数据集上进行训练,实现了车辆目标的快速检测,提升了模型的可移植性,缩短了单帧检测时间.实验结果表明,所提模型在保证准确率的同时,模型单帧检测时间可达22.3 ms,模型大小为16.8 MB,相较于原SSD算法,模型大小减少了约8/9.
推荐文章
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于卷积神经网络的肺炎检测系统
卷积神经网络
胸部X光影像
肺炎诊断
图像预处理
VGG
特征提取
基于多任务卷积神经网络的轨道车辆螺栓异常检测方法
多任务卷积神经网络
螺栓异常
图像对比
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于SqueezeNet卷积神经网络的车辆检测
来源期刊 物联网学报 学科 工学
关键词 智能交通 卷积神经网络 SqueezeNet 车辆检测
年,卷(期) 2020,(3) 所属期刊栏目 专题:智慧交通物联网
研究方向 页码范围 120-125
页数 6页 分类号 TP389.1
字数 语种 中文
DOI 10.11959/j.issn.2096−3750.2020.00175
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 崔华 19 73 5.0 8.0
2 魏泽发 4 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
智能交通
卷积神经网络
SqueezeNet
车辆检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
物联网学报
季刊
2096-3750
10-1491/TP
16开
北京市丰台区成寿寺路11号邮电出版大厦
80-897
2017
chi
出版文献量(篇)
224
总下载数(次)
4
总被引数(次)
359
论文1v1指导