基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在多标记学习中,如何处理高维特征一直是研究难点之一,而特征提取算法可以有效解决数据特征高维性导致的分类性能降低问题.但目前已有的多标记特征提取算法很少充分利用特征信息并充分提取"特征-标记"独立信息及融合信息.基于此,提出一种基于特征标记依赖自编码器的多标记特征提取方法.使用核极限学习机自编码器将原标记空间与原特征空间融合并产生重构后的新特征空间.一方面最大化希尔伯特-施密特范数以充分利用标记信息;另一方面通过主成分分析来降低特征提取过程中的信息损失,结合二者并分别提取"特征-特征"和"特征-标记"信息.通过在Yahoo多组高维多标记数据集上的对比实验表明,该算法的性能优于当前五种主要的多标记特征提取方法,验证了所提算法的有效性.
推荐文章
基于自编码特征提取及弹性学习的手写数字识别
多层前向神经网络
自编码算法
弹性BP算法
MNIST数据库
融合降噪自编码器与BPSO的特征组合方法及其中医应用
降噪自编码器
二进制粒子群算法
非线性
中医药
区分自编码网络及其在滚动轴承故障特征提取中的应用
深度学习
自编码
特征提取
轴承故障诊断
基于自编码神经网络特征提取的回声状态网络研究及过程建模应用
自编码神经网络
回声状态网络
特征提取
软测量
过程建模
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 特征标记依赖自编码器的多标记特征提取方法
来源期刊 计算机科学与探索 学科 工学
关键词 多标记特征提取 特征标记依赖度 核极限学习机 主成分分析 自编码器
年,卷(期) 2020,(3) 所属期刊栏目 人工智能
研究方向 页码范围 470-481
页数 12页 分类号 TP391
字数 7931字 语种 中文
DOI 10.3778/j.issn.1673-9418.1903053
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 程玉胜 安庆师范大学计算机与信息学院 81 339 9.0 14.0
3 庞淑芳 安庆师范大学计算机与信息学院 4 6 2.0 2.0
6 李志伟 安庆师范大学计算机与信息学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (92)
共引文献  (146)
参考文献  (20)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1936(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(1)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(9)
  • 参考文献(2)
  • 二级参考文献(7)
2007(8)
  • 参考文献(1)
  • 二级参考文献(7)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(3)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(12)
  • 参考文献(2)
  • 二级参考文献(10)
2015(12)
  • 参考文献(0)
  • 二级参考文献(12)
2016(15)
  • 参考文献(3)
  • 二级参考文献(12)
2017(6)
  • 参考文献(0)
  • 二级参考文献(6)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多标记特征提取
特征标记依赖度
核极限学习机
主成分分析
自编码器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
月刊
1673-9418
11-5602/TP
大16开
北京市海淀区北四环中路211号北京619信箱26分箱
82-560
2007
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
论文1v1指导